[[Module theory MOC]] # Module A **module** $(M, R, +, \cdot)$ over a [[ring]] $R$ is an [[abelian group]] $(M, +)$ together with an action $(\cdot)$ of $R$ on $V$ that is distributive and $R$-linear. #m/def/module Explicitly, a **left-module** $M$ over $R$ satisfies the following for any $x,y,z \in M$ and $\mu,\lambda \in R$ 1. $(v+u)+w = v+(u+w)$ ^M1 2. $v+0 = v$ ^M2 3. $u+v = v+u$ ^M3 4. $1v = v$ ^M4 5. $(\mu\lambda)v = \mu(\lambda v)$ ^M5 6. $\lambda(u+v) = \lambda u + \lambda v$ ^M6 7. $(\mu+\lambda)v = \mu v + \lambda v$ ^M7 whereas a **right-module** satisfies the same properties with scalar multiplication written on the right.[^lr] Thus a module is a generalization of a [[vector space]], which is just a module over a field. This small change has far-reaching implications, for example the existence of [[Torsion]]. [^lr]: If $R$ is a [[commutative ring]] the concepts of left- and right-modules coïncide, but otherwise there is a distinction between left- and right-scalar multiplication. ## Further terminology - [[Finitely generated module]] ## Properties - [[Module over a unital associative algebra#Explanation|A module inherits linear structure from the underlying ring]] ## Examples - [[Vector space]] - Let $I \trianglelefteq R$ be an [[ideal]]. Then $I$ is an $R$-submodule of $R$. - Let $T:R$ be a [[ring extension]]. Then $T$ is an $R$-module. # --- #state/tidy | #lang/en | #SemBr