Free product of groups

Amalgamated free product

The amalgameted free product is a fibre coproduct along monomorphisms. Let be groups and and be monomorphisms. The amalgamated free product is the limit of the diagram

thus for any for which the diagram commutes, there exists a unique so that the diagram commutes:

https://q.uiver.app/#q=WzAsNSxbMCwwLCJLIl0sWzIsMiwiRyBcXGFtYWxnX0sgSCJdLFswLDIsIkciXSxbMiwwLCJIIl0sWzQsNCwiUSJdLFswLDMsIlxccHNpIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibW9ubyJ9fX1dLFswLDIsIlxcdmFycGhpIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibW9ubyJ9fX1dLFsyLDEsImlfMSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1vbm8ifX19XSxbMywxLCJpXzIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtb25vIn19fV0sWzEsMCwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzIsNCwial8xIiwyLHsiY3VydmUiOjF9XSxbMyw0LCJqXzIiLDAseyJjdXJ2ZSI6LTF9XSxbMSw0LCJoIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d

If is the free product of and with inclusions and then the amalgamated free product is given by the quotient by a Normal closure: group


tidy | en | sembr