Sphere space

Borsuk-Ulam theorem

Let be a continuous function. Then there exists a pair of antipodes such that . topology

The case is easily proven using the Intermediate value theorem.

Corollaries

Antipodal map from a sphere

If is a continuous odd map, i.e. the following diagram commutes where , then there exists with . topology


% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXG1hdGhiYiBTXm4iXSxbMiwwLCJcXG1hdGhiYiBSXm4iXSxbMCwyLCJcXG1hdGhiYiBTXm4iXSxbMiwyLCJcXG1hdGhiYiBSXm4iXSxbMCwxLCJmIl0sWzIsMywiZiJdLFswLDIsImEiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJhcnJvd2hlYWQifX19XSxbMSwzLCJhIiwxLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV1d
\begin{tikzcd}[ampersand replacement=\&]
	{\mathbb S^n} \&\& {\mathbb R^n} \\
	\\
	{\mathbb S^n} \&\& {\mathbb R^n}
	\arrow["f", from=1-1, to=1-3]
	\arrow["f", from=3-1, to=3-3]
	\arrow["a"{description}, tail reversed, from=1-1, to=3-1]
	\arrow["a"{description}, tail reversed, from=1-3, to=3-3]
\end{tikzcd}

Map from a ball antipodal at the boundary

If is a continuous map odd at its boundary , i.e. the following diagram commutes where , then there exists with .


% `calc` is necessary to draw curved arrows.
\usetikzlibrary{calc}
% `pathmorphing` is necessary to draw squiggly arrows.
\usetikzlibrary{decorations.pathmorphing}
% A TikZ style for curved arrows of a fixed height, due to AndréC.
\tikzset{curve/.style={settings={#1},to path={(\tikztostart)
    .. controls ($(\tikztostart)!\pv{pos}!(\tikztotarget)!\pv{height}!270:(\tikztotarget)$)
    and ($(\tikztostart)!1-\pv{pos}!(\tikztotarget)!\pv{height}!270:(\tikztotarget)$)
    .. (\tikztotarget)\tikztonodes}},
    settings/.code={\tikzset{quiver/.cd,#1}
        \def\pv##1{\pgfkeysvalueof{/tikz/quiver/##1}}},
    quiver/.cd,pos/.initial=0.35,height/.initial=0}
% TikZ arrowhead/tail styles.
\tikzset{tail reversed/.code={\pgfsetarrowsstart{tikzcd to}}}
\tikzset{2tail/.code={\pgfsetarrowsstart{Implies[reversed]}}}
\tikzset{2tail reversed/.code={\pgfsetarrowsstart{Implies}}}
% TikZ arrow styles.
\tikzset{no body/.style={/tikz/dash pattern=on 0 off 1mm}}
% https://q.uiver.app/#q=WzAsNixbMiwwLCJcXG1hdGhiYiBCXntuKzF9Il0sWzQsMCwiXFxtYXRoYmIgUl57bisxfSJdLFsyLDIsIlxcbWF0aGJiIEJee24rMX0iXSxbNCwyLCJcXG1hdGhiYiBSXntuKzF9Il0sWzAsMCwiXFxtYXRoYmIgU15uIl0sWzAsMiwiXFxtYXRoYmIgU15uIl0sWzAsMSwiZiJdLFsyLDMsImYiXSxbMSwzLCJhIiwxLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV0sWzQsMCwiXFxpb3RhIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSwyLCJcXGlvdGEiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs0LDUsImEiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJhcnJvd2hlYWQifX19XV0=
\begin{tikzcd}[ampersand replacement=\&]
	{\mathbb S^n} \&\& {\mathbb B^{n+1}} \&\& {\mathbb R^{n+1}} \\
	\\
	{\mathbb S^n} \&\& {\mathbb B^{n+1}} \&\& {\mathbb R^{n+1}}
	\arrow["f", from=1-3, to=1-5]
	\arrow["f", from=3-3, to=3-5]
	\arrow["a"{description}, tail reversed, from=1-5, to=3-5]
	\arrow["\iota", hook, from=1-1, to=1-3]
	\arrow["\iota", hook, from=3-1, to=3-3]
	\arrow["a"{description}, tail reversed, from=1-1, to=3-1]
\end{tikzcd}


develop | en | sembr