Central group extension

Central extension of an abelian group

Let be an abelian group and consider a central extension

Then is nilpotent with its commutator subgroup central group since

and given a -section of we have the associated commutator map

which is alternating -bilinear and independent of .1

Properties

In what follows, if is a subgroup let .

  1. is abelian iff .
  2. Consider the radical of

\begin{align*} R = { a \in A : c_{0}(a,A) = 0 } \end{align*}

You can't use 'macro parameter character #' in math modeThen $\hat{R} = Z(\hat{A})$. ^P2 3. The [[Central group extension#correspondence-between-2-cocycles-and-central-extensions|associated 2-cycle]] $\varepsilon_{0} : A \times A \to C$ and associated commutator $c_{0} : A \times A \to C$ are related by

\begin{align*} c_{0}(a,b) = \varepsilon_{0}(a,b) - \varepsilon_{0}(b,a) \end{align*}

You can't use 'macro parameter character #' in math modethat is, $c_{0}$ is the antisymmetrization of $\varepsilon_{0}$. ^P3 > [!check]- Proof > > Note $\hat{B} = s_{B}\mathrm{e}^C$, and $[s_{B} \mathrm{e}^C, \mathrm{s}_{B} \mathrm{e}^C] = [s_{B}, s_{B}]$, > from which one easily verifies [[#^p1|^P1]]. > > Assume $s_{a}\mathrm{e}^p \in \hat{R}$, so $a \in R$. > Then $c_{0}(a, A) = \ln[s_{a}, s_{A}] = 0$. > Given any $s_{b}\mathrm{e}^q \in \hat{A}$, > $$ > \begin{align*} > s_{a}\mathrm{e}^p s_{b}\mathrm{e}^q = \mathrm{e}^q s_{a}s_{b}\mathrm{e}^p = \mathrm{e}^q s_{b}s_{a}\mathrm{e}^p = s_{b}\mathrm{e}^q s_{a} \mathrm{e}^p > \end{align*} > $$ > so $s_{a} \mathrm{e}^p \in Z(\hat{A})$. > Similarly, if $s_{a} \in Z(\hat{A})$ then $c_{0}(a,A) = \ln[s_{a}, A] = 0$. > Therefore $\hat{R} = Z(\hat{A})$, proving [[#^p2|^P2]]. > > Finally, noting that $\exp$ is a [[group monomorphism]], > $$ > \begin{align*} > \mathrm{e}^{c_{0}(a,b)} &= [s_{a},s_{b}] = s_{a}s_{b} s_{a}^{-1}s_{b}^{-1} \\ > &= s_{a+b} \mathrm{e}^{\varepsilon_{0}(a,b)} s_{b+a}^{-1}\mathrm{e}^{-\varepsilon_{0}(b,a)} \\ > &= \mathrm{e}^{\varepsilon_{0}(a,b)-\varepsilon_{0}(a,b)} > \end{align*} > $$ > proving [[#^p3|^P3]]. <span class="QED"/> ## Special cases - [[Cyclic central extension of a free abelian group]] - [[2 central extension of a free abelian group]] - [[2 central extension of an elementary abelian 2-group]] (includes extraspecial 2-groups) # --- #state/tidy | #lang/en | #SemBr

Footnotes

  1. 1988. Vertex operator algebras and the Monster, §5.2, pp. 104ff.