Conditional probability
Conditional probability allows the investigation of how the knowledge of one event occurring
effects the knowledge of the other one.
Given a probability model
unless
Properties
\mathbb{P}(A\cap B)= \mathbb{P}(B)\mathbb{P}(A\mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A)
\frac{\mathbb{P}(A\mid B)}{\mathbb{P}(A^c \mid B)} = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B \mid A^c)} \frac{\mathbb{P}(A)}{\mathbb{P}(A^c)}
\begin{align*} \mathbb{P}(B)=\sum_{i=1}^n\mathbb{P}(B\mid A_{i})\mathbb{P}(A_{i}) \end{align*}
See also
Footnotes
-
Since this may be considered an impossible scenario. ↩