Code

Equivalence of codes

A general code of length over alphabet may be viewed as a subset of the function space , where . Two codes and are equivalent iff there exist bijections and such that code i.e. is a bijection in the following commutative diagram in :

https://q.uiver.app/#q=WzAsOCxbMiwwLCJTXlxcT21lZ2EiXSxbMiwyLCJUXlxcVGhldGEiXSxbMCwwLCJcXG1hdGhjYWwgQyJdLFswLDIsIlxcbWF0aGNhbCBEIl0sWzQsMCwiUyJdLFs0LDIsIlQiXSxbNiwyLCJcXFRoZXRhIl0sWzYsMCwiXFxPbWVnYSJdLFsyLDAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoiYm90dG9tIn19fV0sWzMsMSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbMCwxLCJcXGFscGhhXlxca2FwcGEiXSxbMiwzLCJcXHZhcnBoaSIsMl0sWzQsNSwiXFxhbHBoYSJdLFs2LDcsIlxca2FwcGEiLDJdXQ==

When codes (and their alphabets) are given additional algebraic structure, we usually require a kind of equivalence which respects this structure. Examples include


tidy | en | sembr