Homological algebra MOC

Five lemma

If the following diagram commutes in with both rows exact

https://q.uiver.app/#q=WzAsMTAsWzAsMCwiQV8xIl0sWzIsMCwiQV8yIl0sWzQsMCwiQV8zIl0sWzYsMCwiQV80Il0sWzgsMCwiQV81Il0sWzAsMiwiQl8xIl0sWzIsMiwiQl8yIl0sWzQsMiwiQl8zIl0sWzYsMiwiQl80Il0sWzgsMiwiQl81Il0sWzAsMSwiXFxhbHBoYV8xIl0sWzEsMiwiXFxhbHBoYV8yIl0sWzIsMywiXFxhbHBoYV8zIl0sWzMsNCwiXFxhbHBoYV80Il0sWzUsNiwiXFxiZXRhXzEiLDJdLFs2LDcsIlxcYmV0YV8yIiwyXSxbNyw4LCJcXGJldGFfMyIsMl0sWzgsOSwiXFxiZXRhXzQiLDJdLFswLDUsIlxcZ2FtbWFfMSIsMSx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFsxLDYsIlxcZ2FtbWFfMiIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1vbm8ifSwiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzIsNywiXFxnYW1tYV8zIiwxXSxbMyw4LCJcXGdhbW1hXzQiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtb25vIn0sImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs0LDksIlxcZ2FtbWFfNSIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1vbm8ifX19XV0=

and are isomorphisms, epimorphism, and monomorphism then is an isomorphism.1 homology

Every Module is a group, and every abelian category has a representation as a module category (Freyd-Mitchell theorem), so the lemma holds for module and abelian categories,


tidy | en | sembr

Footnotes

  1. 2010, Algebraische Topologie, ¶3.1.10, p.130ff