Formal calculus MOC
The formal delta over a field is the Laurent series1 fcalc
given by the Fourier series expansion of the Dirac delta.
Properties
Let be a vector space over .
Let and .
Finally let and .
Then in [[Formal sums over a vector space|]]
-
\begin{align*}
v(z)\delta(az) = v(a^{-1}) \delta (az)
\end{align*}
^P2
3. $$
\begin{align*}
v(z)T[\delta(az)] = v(a^{-1})T[\delta(az)]-(Tv)(a^{-1})\delta(az)
\end{align*}
^PB
6. $$
\begin{align*}
X(z_{1},z_{2}) T_{1}[\delta(az_{1} / z_{2})]
&= X(a^{-1}z_{2},z_{2})T_{1}[\delta(az_{1} / z_{2})] - (T_{1}X)(a^{-1}z_{2},z_{2})\delta(az_{1} / z_{2}) \
X(z_{1},z_{2})T_{2}[\delta(az_{1} / z_{2})]
&= X(z_{1},az_{1})T_{2}[\delta(az_{1} / z_{2})] - (T_{2}X)(z_{1},az_{1}) \delta(az_{1} / z_{2})
\end{align*}