jaj•a•person's notes

  • Linear algebra MOC
  • Objects
  • Extra structure
  • Morphisms
  • In a fixed basis
  • Properties of morphisms
  • Internal constructions
  • Externally

Mathematics MOC

Linear algebra MOC

Linear algebra is the study of Category of vector spaces. Vector notation in these notes. Linear algebra is generalized by Module theory MOC.

Objects

Vector space

  • Span
  • Linear (in)dependence
  • Vector basis
  • Dimension of a vector space

Extra structure

  • Quadratic space

Morphisms

  • Linear map

In a fixed basis

  • Matrix algebra over a field
  • Types of square matrix
  • Row and column space

Properties of morphisms

  • Eigenvectors, eigenvalues, and eigenspaces
  • Diagonalization

Internal constructions

  • Vector subspace
  • Complement subspace

Externally

  • Quotient vector space
  • Direct product vector space (product), Direct sum of vector spaces (coproduct)
  • Tensor product of vector spaces over a field


moc | develop | sembr


Graph View

Backlinks

  • Adjugate matrix
  • Alternating multilinear map
  • Category of vector spaces
  • Category-vector space analogy
  • Complement subspace
  • Determinant
  • Diagonalization
  • Dimension of a vector space
  • Direct sum of vector spaces
  • Dual vector space
  • Eigenvectors, eigenvalues, and eigenspaces
  • Geometric algebra MOC
  • Graded vector space
  • Gram matrix
  • Invariant subspace
  • Ladder operator
  • Linear (in)dependence
  • Linear equations MOC
  • Linear isomorphism
  • Linear map
  • Mathematics MOC
  • Matrix determinant
  • Minor
  • Module theory MOC
  • Monomial transformation
  • Multilinear map
  • Oriented vector space
  • Quotient vector space
  • R-comonoid
  • Row and column space
  • Span
  • Tensor product of vector spaces over a field
  • Trace
  • Unitary operator
  • Vandermonde matrix
  • Vector basis
  • Vector space over a field extension
  • Vector space
  • Vector subspace
  • Wronskian

Created with Quartz v4.5.2 © 2026