Linear map Kernel of a linear map The kernel or null space of a linear map is the the preïmage , linalg i.e. the set of all vectors in that are mapped to . It is therefore equivalent to the Kernel of a group homomorphism of considered as a group homomorphism. The nullity of a linear map is the dimension of its kernel. linalg Properties Rank-nullity theorem If is a solution to then the full solution set is tidy | en | sembr