Probability-generating function
The probability generating function is a generating function for the probability mass function of a
by the Law of the unconscious statistician.
This is well-defined as a convergent function
Properties
- If the Moment-generating function exists, for
\begin{align*} \mathbb{P}[X=x]= \frac{g_{X}^{(x)}(0)}{x!} \end{align*}
\begin{align*} g_{\lambda X+\mu Y}(t) = g_{X}(t^\lambda) + g_{Y}(t^\mu) \end{align*}