Fundamental groupoid

Seifert-Van Kampen-Brown theorem

Let be a topological space with open cover . Then the following is a fibre coproduct in on the left and in on the right.12 homotopy

https://q.uiver.app/#q=WzAsOCxbMCwwLCJVXFxjYXAgViJdLFswLDIsIlUiXSxbMiwwLCJWIl0sWzIsMiwiWCJdLFs0LDAsIlxccGlfMShVIFxcY2FwIFYpIl0sWzQsMiwiXFxwaV8xKFUpIl0sWzYsMiwiXFxwaV8xKFgpIl0sWzYsMCwiXFxwaV8xKFYpIl0sWzAsMiwiaV8yIl0sWzAsMSwiaV8xIiwyXSxbMSwzLCJqXzEiXSxbMiwzLCJqXzIiXSxbNCw3LCJcXHBpXzEgaV8yIl0sWzQsNSwiXFxwaV8xaV8xIiwyXSxbNSw2LCJcXHBpXzFqXzEiLDJdLFs3LDYsIlxccGlfMmpfMiJdLFs2LDQsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFszLDAsIiIsMCx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==

where denote natural inclusions; i.e. the Fundamental groupoid of is a fibre coproduct of the fundamental groupoids of the open covering spaces and .

The classical Seifert-Van Kampen theorem concerns the Fundamental group, which can easily be derived from the above theorem. Ronald Brown introduced the groupoid formulation.


tidy | en | sembr

Footnotes

  1. 2020, Topology: A categorical approach, §6.7, pp. 139–140

  2. 2006, Topology and groupoids, §6.7, pp. 240ff