Category theory MOC

Zero morphism

In a category , a constant morphism satisfies for any and , whereas a coconstant morphism satisfies for any . A zero morphism is both a constant and coconstant morphism. cat

A category is said to have zero morphisms iff for any two objects there is a fixed morphism such that the following diagram commutes cat

https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzAsMiwiWSJdLFsyLDAsIlgiXSxbMiwyLCJZIl0sWzAsMSwiZiIsMl0sWzIsMywiZyJdLFswLDIsIjBfe1hYfSJdLFsxLDMsIjBfe1lZfSIsMl0sWzAsMywiMF97WFl9IiwxXV0=

for any and .

Properties


tidy | en | sembr