Fundamental theorem of calculus

Острогра́дский’s divergence theorem

Let be a solid and be its oriented boundary. Let be a vector field differentiable in . Then calculus

Note the left hand side is equivalent to the flux through the surface of , the right hand side refers to Divergence. Heuristically, if a region has no divergence, there is no nett in-flow or out-flow, and therefore the flux through the boundary is zero.

Corollaries

\begin{align*} \iiint_{\Omega} (\vab{\nabla} \times \vab A) ,d\tau = -\oiint_{\partial\Omega} \vab A \times d\vab a \end{align*}

You can't use 'macro parameter character #' in math mode^C1 > [!check]- Proof > > For any vector $\vab c \in \mathbb{R}^3$, we have > $$ > \begin{align*} > \vab c \cdot \oiint_{\partial\Omega} \vab A \times \vab da &= -\oiint_{\partial\Omega} (\vab A \times \vab c) \cdot d\vab a \\ > &= -\iiint_{\Omega} \vab{\nabla}\cdot(\vab A \times \vab c) \,d\tau \\ > &= \vab c \cdot \iiint_{\Omega} (\vab{\nabla}\times \vab A) \,d\tau > \end{align*} > $$ > proving [[#^c1|^C1]]. <span class="QED"/> ## Practice problems - 2016\. [[Sources/@stewartCalculus2016|Calculus]], pp. 1185–1186 (§16.9 exercises) # --- #state/develop | #lang/en | #SemBr | #review