[[Module theory MOC]] # Submodule Let $(M, R, +, \cdot)$ be a (left) [[module]]. A **submodule** $N \leq M$ is a module under the same operations, #m/def/module i.e. $(N, +)$ is a [[subgroup]] such that $r \cdot n \in N$ for any $n \in N$ and $r \in R$. Thus a submodule is an **invariant subspace** under the carried representation of $R$ (see [[invariant subspace]]). ## Examples - Let $I \trianglelefteq R$ be an [[ideal]]. Then $I$ is an $R$-submodule of $R$. # --- #state/tidy | #lang/en | #SemBr